Model Question Paper

Reg No: Name:

RAJAGIRI SCHOOL OF ENGINEERING & TECHNOLOGY (AUTONOMOUS)

FIRST SEMESTER B.TECH DEGREE EXAMINATION, MARCH 2022 101908 /MA100A LINEAR ALGEBRA & CALCULUS

Max. Marks: 100

Duration: 3 hours

PART A

(Answer **all** questions, **each** question carries 3 marks)

1.	Determine the rank of the matrix $A =$	$\begin{bmatrix} -3\\2\\1 \end{bmatrix}$	-7 4 2	$\begin{bmatrix} -5\\3\\2 \end{bmatrix}$
2.	Write down the Eigen values of $A =$	[-3 2 1	-7 4 2	$\begin{bmatrix} -5\\3\\2 \end{bmatrix}$

3. Find f_x (1,3) and f_y (1,3) for the function $f(x, y) = 2x^3y^2 + 2y + 4x + 3$.

4. If $w = x^2 + y^2 - z^2$ where $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$. Use appropriate

form of the chain rule to find $\frac{\partial w}{\partial \rho}$, $\frac{\partial w}{\partial \theta}$ and $\frac{\partial w}{\partial \phi}$.

- 5. Use double integral to find the area of the region enclosed between the parabolas $y = x^2$ and the line y = 2x.
- 6. Use polar coordinates to evaluate the area of the region bounded by $x^2 + y^2 = 4$, the line y = x and the y axis in the first quadrant.
- 7. Test the convergence of the series $\sum_{K=1}^{k} \frac{k}{k+1}$.
- 8. Test the convergence of the alternating series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ using Leibnitz test.
- 9. Find the Taylor series expansion of $sin\pi x$ about $x = \frac{1}{2}$.
- 10. Find the values to which the Fourier series of f(x) = x for $-\pi < x < \pi$, with $f(x + 2\pi) = f(x)$ converges.

PART B

(Answer one full question from each module, each question carries 14 marks)

Module -I

11. (a) Solve the following system of equations

y + z - 2w = 02x - 3y - 3z + 6w = 24x + y + z - 2w = 4

(b) Find the eigen values and eigen vectors off the matrix $A = \begin{bmatrix} 3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

12. (a) Diagonalize the matrix $A = \begin{bmatrix} 6 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 5 \end{bmatrix}$

b) What kind of conic section the quadratic form $3x^2 + 22x_1x_2 + 3x^2 = 0$ represents? Transform it to Principal axes.

Module – II

13. (a) Find the local linear approximation to $f(x, y) = x^2 + y^2$ at the point (3, 4).Use it to approximate ($\overline{3.04, 3.98}$).

(b) Let
$$w = x^2 + y^2 + z^2$$
, $x = \cos\theta$, $y = \sin\theta$, $z = \tan\theta$. Use chain rule to find $\frac{dw}{d\theta}$ when $\theta = \frac{\pi}{4}$

14. (a) Let z = f(x, y) where $x = rcos\theta$, $y = rsin\theta$, prove that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2.$$

(b) Locate all relative maxima, relative minima and saddle points $f(x, y) = xy + \frac{a^2}{x} + \frac{b^2}{y}$, $a \neq 0, b \neq 0$

Module - III

- 15. (a) Evaluate $\iint (2x^2y + 9y^3) dxdy$ where D is the region bounded by y = 2x and $y = 2\sqrt{x}$. (b) Evaluate $\int_0^4 \int_{\sqrt{y}}^2 e^{x^2} dxdy$ changing the order of integration.
- 16. (a) Find the volume of the solid bounded by the cylinder $x^2 + y^2 = 4$ and the Planes
 - y + z = 4 & z = 0.
 - (b) Evaluate $\iiint (1 x^2 y^2 z^2) dx dy dz$, taken throughout the volume of the sphere $x^2 + y^2 + z^2 = 1$, by transforming to spherical polar coordinates

Module - IV

- 17. (a) Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k^k}{k!}$
 - (b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty} (-1)^k \frac{(2k-1)!}{3^k}$

18. (a) Check whether the series $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{(2k)!}{(3k-2)!}$ is absolutely convergent, conditionally, convergent or divergent.

(b) Test the convergence of the series $1 + \frac{1.2}{1.3} + \frac{1.2.3}{1.3.5} + \cdots$.

Module - IV

17. (a) Test the convergence of the series $\sum_{k=1}^{\infty} \frac{k^k}{k!}$

(b) Determine the convergence or divergence of the series $\sum_{k=1}^{\infty} \frac{(2k-1)!}{3^k}$

- 18. (a) Check whether the series $\sum_{k=1}^{\infty} \frac{(2k)!}{(3k-2)!}$ is convergent or divergent.
 - (b) Test the convergence of the series $1 + \frac{1.2}{1.3} + \frac{1.2.3}{1.3.5} + \cdots$.

Module - V

- 19. (a) Obtain the Fourier series of for $f(x) = e^{-s}$, in the interval $0 < x < 2\pi$ with $f(x + 2\pi) = f(x)$ Hence deduce the value of $\sum_{n=2}^{\infty} \frac{(-1)^n}{1+n^2}$.
 - (b) Find the half range sine series of f(x) = 2x in (0, l)
- 20. (a) Expand $(1 + x)^{-2}$ as a Taylor series about x = 0 and state the region of convergence of the series.
- (b) Find the Fourier series for $(x) = x^2$ in the interval $= \pi \le x < \pi$ with $(x + 2\pi) = f(x)$. Hence

show that $\frac{1}{1^4} + \frac{1}{2^4} + \dots = \frac{\pi^4}{90}$